The Situation Regarding Rare Earth Elements

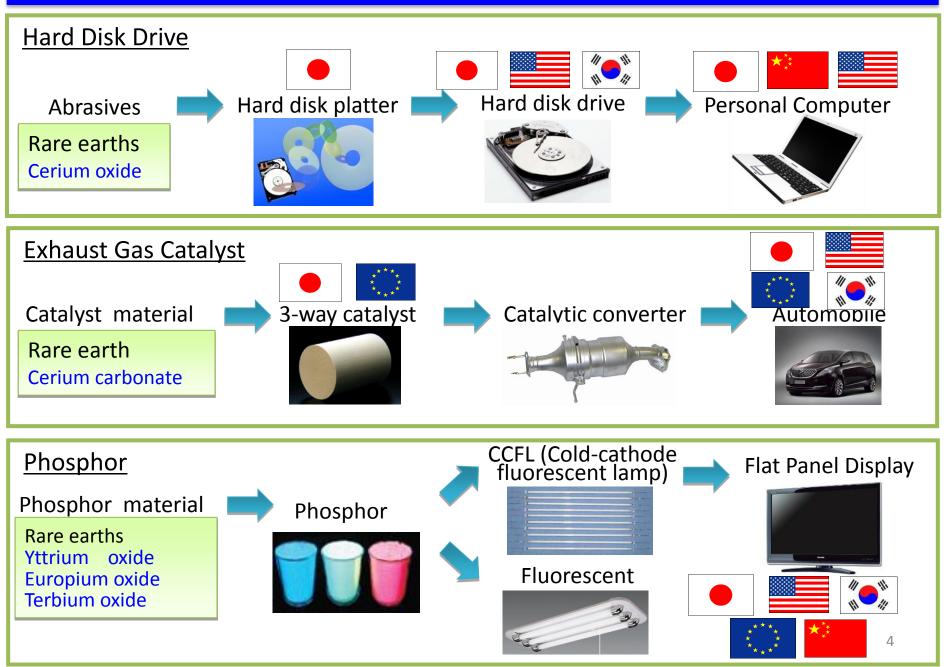
Ministry of Economy, Trade and Industry March 2011

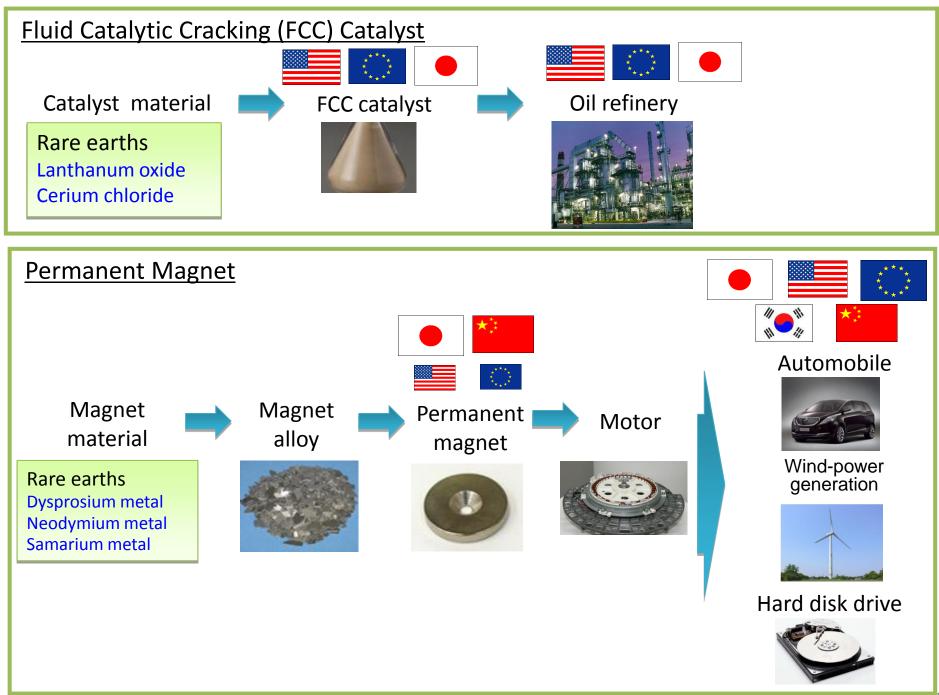
➢Functions of REEs in Industrial Sectors

➤What are Issues on REEs

➢Our Measures to Deal with REEs Issues

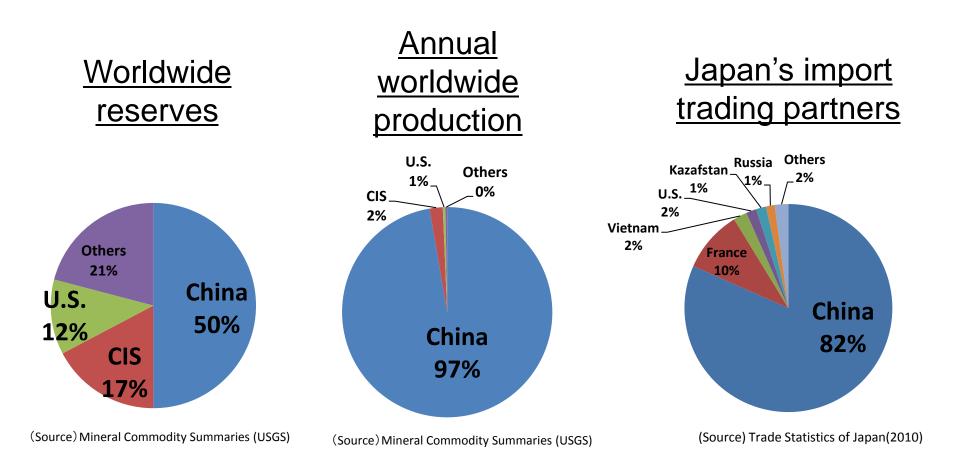
- ✓ Diversification of Supply Source
- R&D for Substitute and New Manufacturing Ways

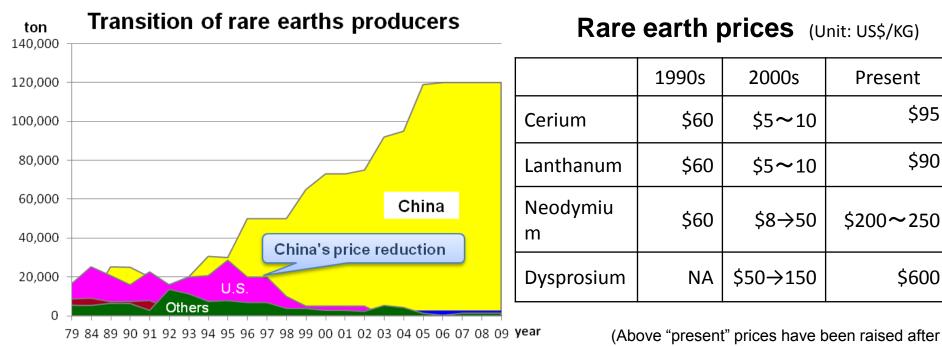

✓ Recycling


➢Functions of REEs in Industrial Sectors

Principal Uses of Each Rare Earth Element

	Sc	Catalyst				
	La	Optical glass, Ceramic condenser, Catalyst & Luminescent Materials				
LREE	Ce	Polishing, Catalyst, UV-cut glass & Glass decolorizer				
	Pr	Sintered Nd magnet & Ceramic tile color former				
	Nd	Nd magnet & Ceramic condenser				
	<mark>Pm</mark>	NA (No stable isotope)				
MREE	<mark>Sm</mark>	Sm-Co magnet				
	Eu	Luminescent Materials (Red)				
	Gd	Optical glass & Neutron shielding material for atomic reactor				
	Tb	Luminescent Materials (Green), Magnetic optical disk target & Sintered Nd magnet				
	Dy	Sintered Nd magnet & Giant Magnetostrictive Material				
	Но	Laser component & Magnetic superconductive material				
HREE	Er	Crystal grass colorant				
	Tm	Laser component				
	Yb	Laser component & Visible upconversion				
	Lu Scintillation					
	Υ	Luminescent Materials, Optical glass & anodic/cathdic material of secondary battery ³				


Examples of Industrial Supply Chains regarding REEs



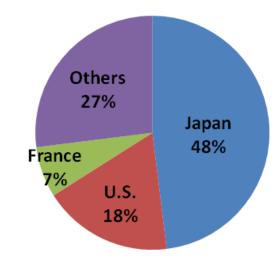
➤What are Issues on REEs

Basic information on rare earths

Change of the position of China as a resource supplier

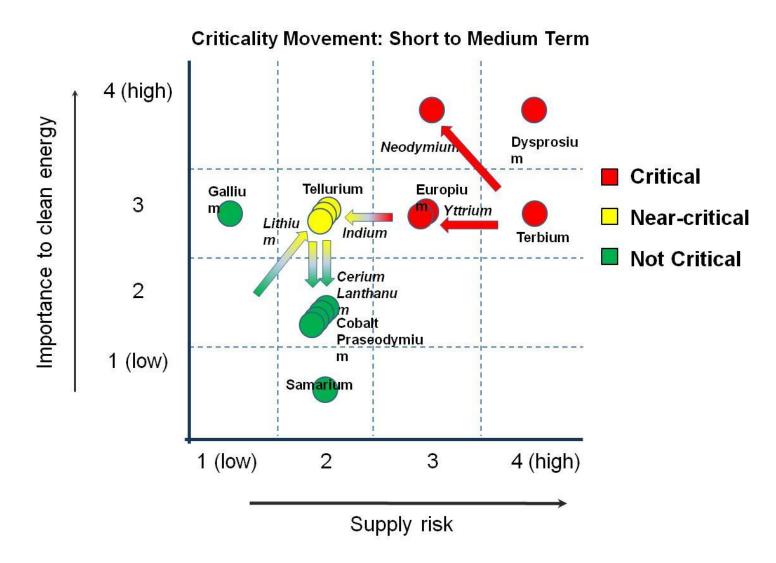
(Source) Mineral Commodity Summaries(USGS)

8

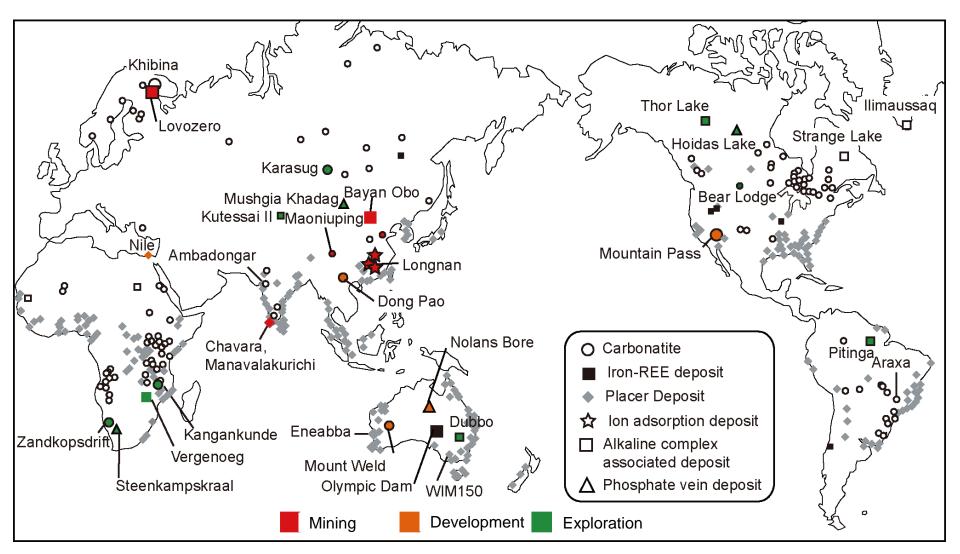

autumn of last year.)

China export quotas on rare earths

(Unit: ton)


Year	2006	2007	2008	2008 2009					2010		
fear	2006	2007	2008	First	Second	Tot	al	First	Second	Total	First
Export quotas	61,560	60,173	47,449	21,728	28,417	50,1	45	22,283	7,976	30,259	14,446
								- 40%			35%

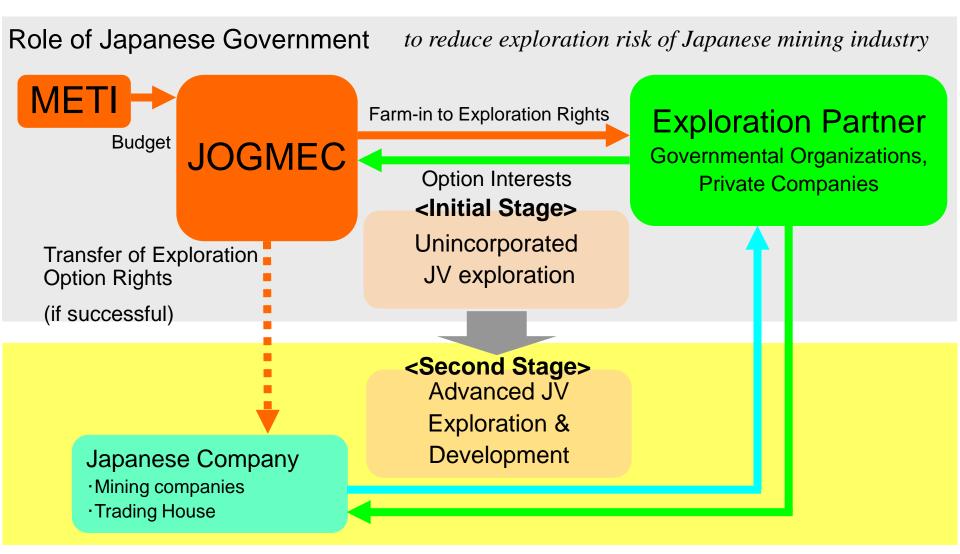
China's export tradiing partner


(Source) China Custam(2010)

Critical Materials Strategy (by U.S. DOE)

Worldwide Rare Earth Resources

REEs have a wide distribution across the world.



% Distribution of REE in Various Deposits

			Chi	na		USA	Au	stralia	Canada
		(Bastnesite)	(lor	n-adsorptic	n type)	(Bastnesite))	(Monazite)	(Apatite)	(Xenotime etc.
		Baiyun %	Longnan %	Xinfeng %	Xunniao %	Mt.Pass %	(Mt.Weld) %	Nolans %	Thor Lake %
Lanthanum	La2O3	23.0	0.8	26.5	31.3	33.2	25.1	20.0	0.30
Cerium	CeO2	50.0	0.2	2.4	3.4	49.1	48.5	48.2	4.40
Praseodymium	Pr6011	6.2	0.9	6.0	8.7	4.3	5.3	5.9	1.70
Neodymium	Nd203	18.5	3.8	20.0	28.1	12.0	16.7	21.5	15.6
Samarium	Sm203	0.8	2.8	4.0	5.3	0.8	2.2	2.4	10.4
Europium	Eu203	0.2	0.0	0.8	0.6	0.1	0.65	0.41	1.60
Gadolinium	Gd203	0.7	5.7	4.0	4.5	0.2	0.90	1.0	14.3
Terbium	Tb407	0.1	1.20	0.6	0.5	Trace	0.10	0.08	1.80
Dysprosium	Dy203	0.1	8.40	4.0	1.2	Trace	0.20	0.34	9.80
Holmium	Ho203	Trace	1.80	0.8	0.1	Trace	Trace	other 0.17	1.20
Erbium	Er203	Trace	5.10	1.80	0.3	Trace	Trace		4.10
Thulium	Tm203	Trace	0.80	0.30	0.1	Trace	Trace		0.70
Ytterbium	Yb203	Trace	4.60	1.20	0.5	Trace	0.10		4.40
Lutetium	Lu203	Trace	0.60	0.10	< 0.1	Trace	Trace		0.70
Yttrium	Y203	Trace	62.0	27.5	15.4	0.1	0.40		29.00
	Total	99.6	98.7	91.2	100.1	99.8	100.1	100.0	100.0

In common REEs deposits (bastnesite/ monazite), La₂O₃/CeO₂ content in total REO is 70 – 80% (especially 50% of CeO₂). ➢Our Measures to Deal with REEs Issues✓Diversification of Supply Source

JOGMEC JV Exploration Scheme

Japan's Rare Earths Projects (in which Japanese Companies and/or JOGMEC is involved)

Development

Number	Country Project		Partners	G-G Arrangement		
1	Vietnam	Dong Pao	Vietnamese Private Company	31 Oct. 2010: East Asia Summit @Hanoi		
2	India	Orissa	Indian Public Company	25 Oct. 2010: Japan-India summit @Tokyo		
3	Kazakhstan	SARECO	Kazakhstan Public Company	29 Spt. 2010: Japan-Kazakhstan Public-Private Joint Economic Committee @Tokyo		

Exploration by JOGMEC

Number	Project	Country	Partners
1	Kratz Spring	USA	Gold Canyon Resources
2	Ytterby	Canada	Midland Exploration
3	North Beaty Project	Canada	Titan Uranium
4	South Gobi Region	Mongol	Mongolian Government

[Reference] Foreign companies' development projects

Number	Company	Project	Stage	Partners	
1	Lynas (Australia)	Mt. Weld	Development	Sojitz (Japanese Private Company)	
2	Molycorp Minerals (USA)	Mountain Pass	Redevelopment	Sumitomo Corp. (Japanese Private Company)	

➤Our Measures to Deal with REEs Issues✓R&D for Substitute and New Manufacturing Ways

Rare Metal substitute materials development project

Budget	US\$82 million (US\$1 = \85)
Term	FY2007-
	Indium for transparent conducting electrodes, 50% reduction
	Dysprosium for REE magnets, 30% reduction
	Tungsten for cemented carbide tools, 30% reduction
Targets	PGM for emission control catalysts, 50% reduction
	Cerium for precise polishing, 30% reduction
	Terbium and Europium for fluorescent lamps, 80% reduction

A example of development project

Dysprosium (Dy)

Reducing Dysprosium use in rare earth permanent magnets

Grain refinement and control of interface nanostructure techniques to realize high H_c sintered Nd-Fe-B magnets

Tohoku University, Yamagata University, National Institute for Materials Science (NIMS), Japan Atomic Energy Agency, Santoku Corp., Intermetallics Co., Ltd., TDK Corp., Toyota Motor Corp.

Development of high-performance magnetic materials

Development of new materials for permanent magnets with less or no rare earth element content

Tohoku University, Kyoto University, Chiba Institute of Technology, Kurashiki University of Science and Art, National Institute for Materials Science (NIMS), Toda Kogyo Corp., Teijin Ltd., Toyota Motor Corp.

International cooperation between consuming countries on rare earths

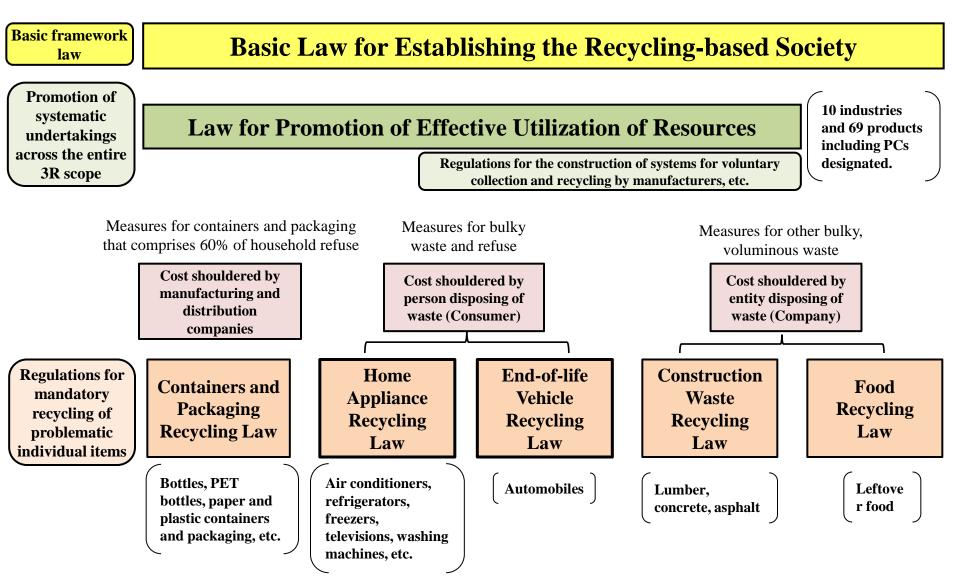
<U.S. and Japan>

♦U.S. – Japan Roundtable on Rare Earth Elements Research and Development for Clean Energy Technologies

Date: November 18-19, 2010 / Venue: Lawrence Livermore National Laboratory, U.S.

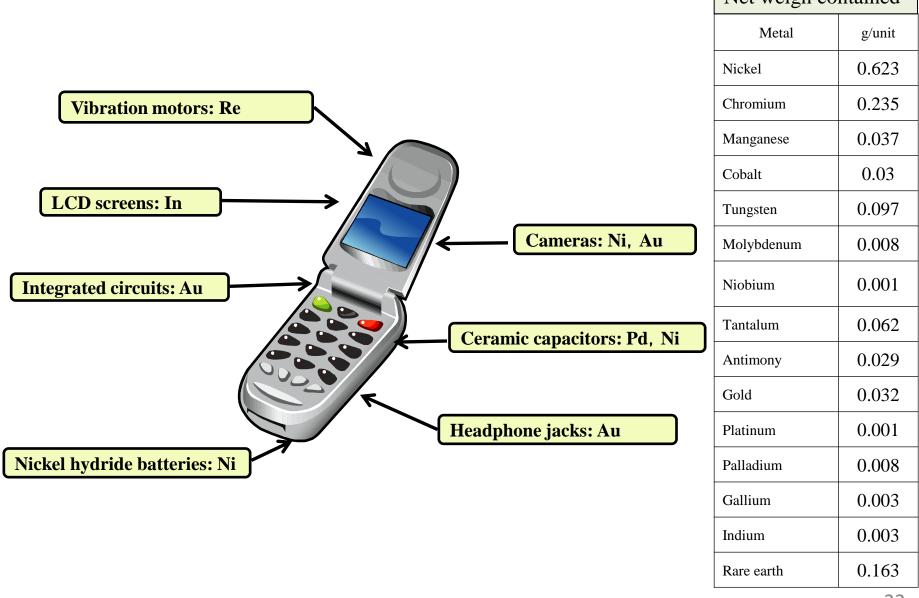
Next workshop in Japan

Date: TBD / Venue: Japan


<Europe and U.S. >

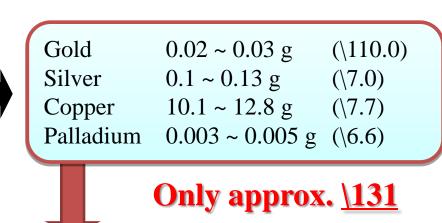
Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future

Date: December 3, 2010 / Venue: the Massachusetts Institute of Technology(MIT), in U.S.


➢Our Measures to Deal with REEs Issues✓Recycling

Structure of Laws relating to 3R

Primary Rare Metals Used in Cell Phones


Cell Phone Net weigh contained

Condition and Challenges for Rare Metal Recycling

<u>Example</u>

Rare Metals which are recovered from a cell phone

Technological development & plant investment for rare metal recycling have been advanced by smelting industry.

<u>Challenges</u>

Establishment of social system for economic recycling

•Products incl. large amount of rare metals.

•Efficient and large-scale scrap collecting.

•Technological development for rare metal recycling.

