

The Peak of Discovery

Kipawa Heavy Rare Earths Deposit An Example of a Potential Producer of Technology Metals

March 23, 2011

Disclaimer

The information contained herein has been prepared to assist interested parties in making their own assessment of Matamec Explorations Inc. (the "Company") and does not purport to contain all of the information that an interested party may desire. In all cases, interested parties should conduct their own investigation and analysis of the Company, its assets, financial condition and prospects, and of the data set forth in this presentation. The Company does not assume any responsibility for independent verification of any of the information set forth herein, including any financial forecasts or statements about the prospects of the Company contained herein. The Company does not make any representation or warranty as to the accuracy or completeness of this presentation or the information contained in, or for any omissions from, this presentation or any other written or oral communications transmitted to the recipient in the course of its assessment of the Company. By the receipt of this presentation, the recipient acknowledges that only those particular representations and warranties, if any, which may be made to a party in a definitive written agreement regarding a transaction involving the Company if, as and when executed, and subject to such limitations and restrictions as may be specified therein, will have any legal effect.

Developing the Kipawa Heavy Rare Earth Deposit

1. Technology Metals

2. Rare Earth-Bearing Minerals

3. Product Life Cycle

4. World Prices

5. 10 Steps to Commercial RE Production (Dudley Kingsnorth)

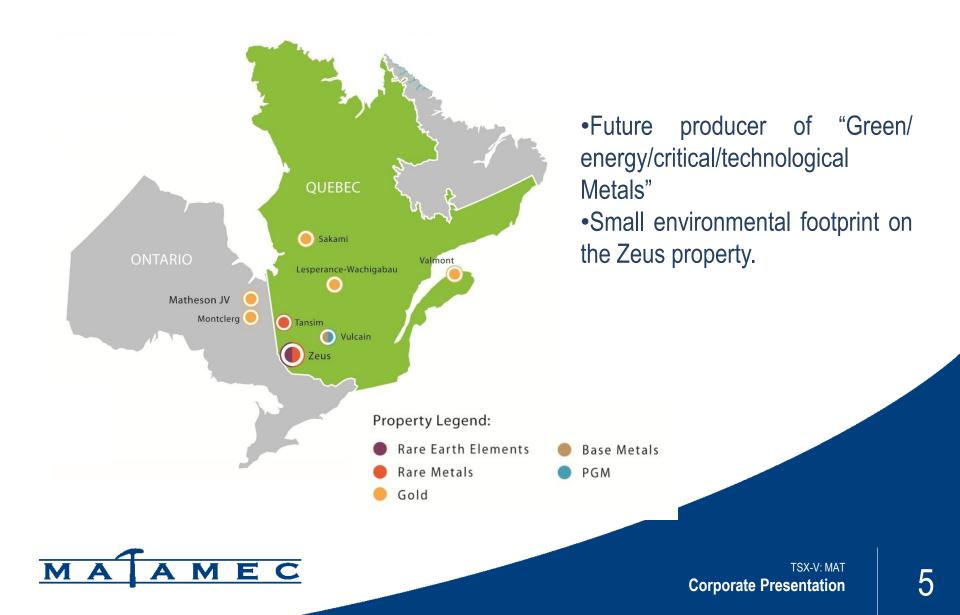
6. Sustainable Development

Developing the Kipawa Heavy Rare Earth Deposit

1. Technology Metals

Rare Earths

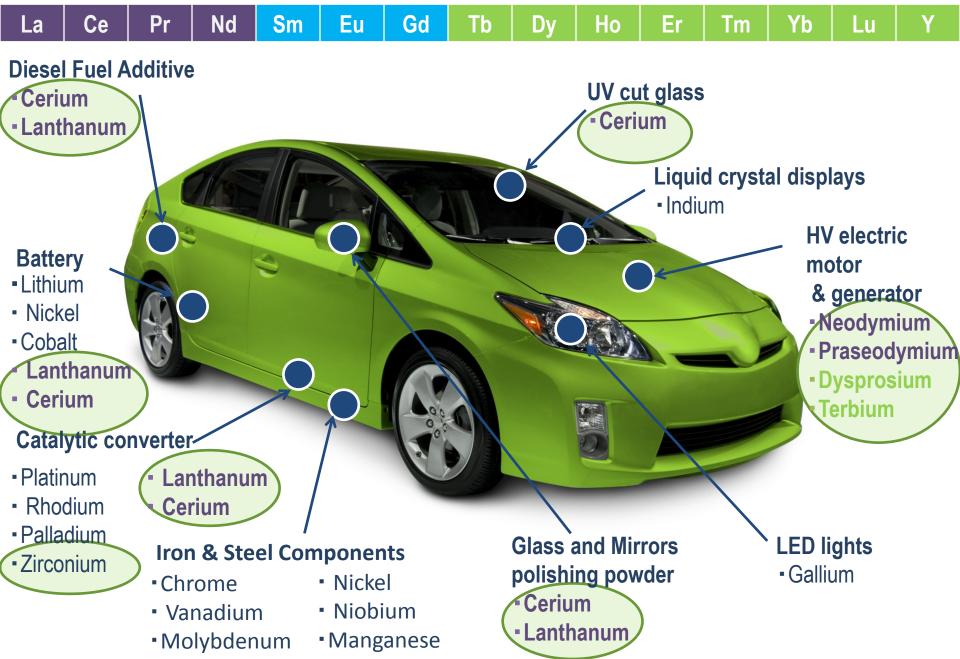
- Light


- Medium

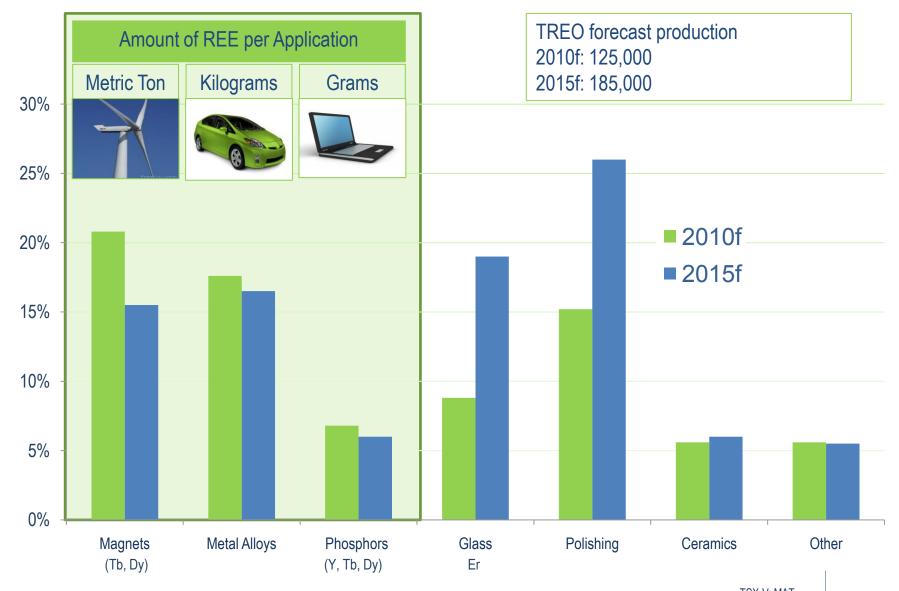
- Heavy (forecast shortage for 2014)

Zirconium

Future Producer of "Strategic Metals"



Rare Elements: Properties


Properties of Rare Earth Elements
Reduces Allows
Weight Greater Efficiency
Emissions Performance
Energy Consumption Miniaturization
Speed
Durability
Thermal Stability

Metals Used in Hybrid Cars

REE Market: Matamec's Niche – Heavy Rare Earths

Source: Dudley J. Kingsnorth, IMCOA, November 2010

⁸

Developing the Kipawa Heavy Rare Earth Deposit

2. Rare Earth-Bearing Minerals

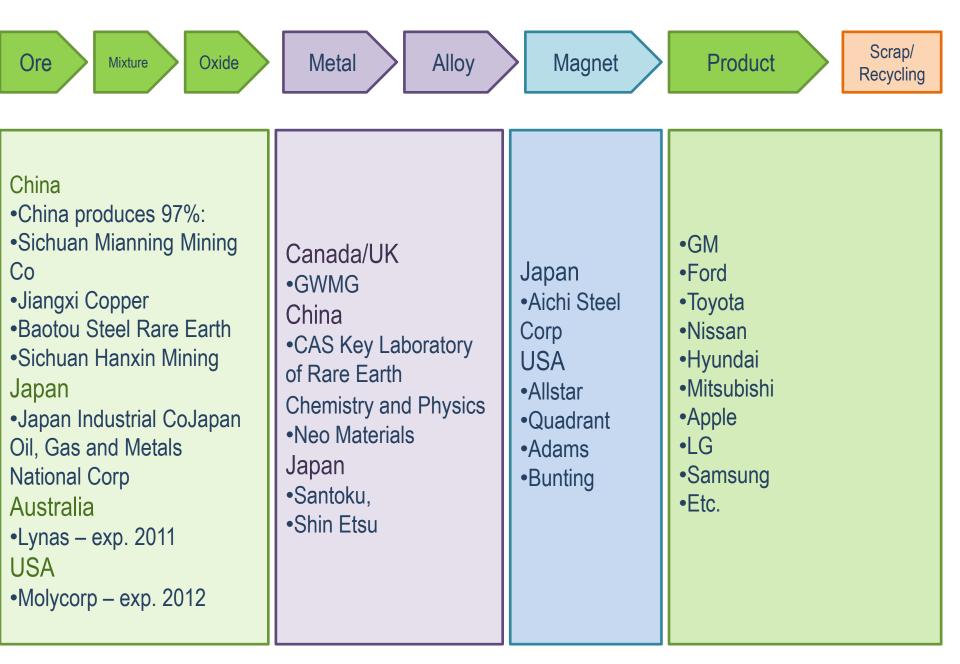
TSX-V: MAT Corporate Presentation

Minerals That Contain Rare Earths

Mineral	% REO	Mineral	% REO	Mineral	% REO
Aeschynite	36	Churchite	44	Loparite	36
Allanite	30	Eudialyte	10	Monazite	71
Anatase	3	Euxenite	40	Mosandrite	65
Ancylite	46	Fergusonite	47	Parisite	64
Apatite	19	Florencite	32	Samarskite	12
Bastnasite	76	Gadolinite	52	Synchisite	51
Brannerite	6	Huanghoite	38	Thalenite	63
Britholite	62	Hydroxylbastnasite	75	Xenotime	61
Cerianite	81	Kainosite	38	Yttrotantalite	24
Cheralite	5	South China Clays	0.03		

Minerals Producing Rare Earths

TSX-V: MAT Corporate Presentation


Developing the Kipawa Heavy Rare Earth Deposit

3. Product Life Cycle

Markets: Rare Earth Supply Chain

Developing the Kipawa Heavy Rare Earth Deposit

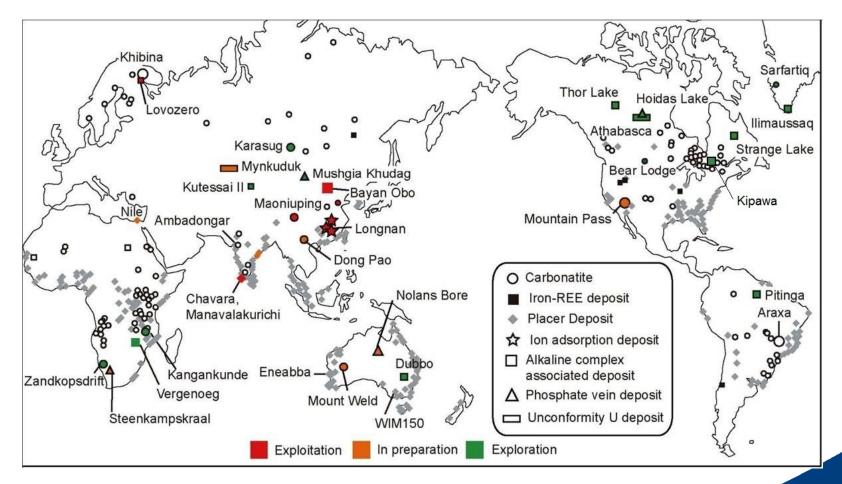
4. Impact of pricing by the Chinese

TSX-V: MAT Corporate Presentation

Impact Of Chinese Controlled Market

Higher Prices:

- •Explosion of rare earth projects world wide
- •Reduction of rare earth consumption in current and new applications
- •Recycling of rare earths
- •Substitution of rare earths in
- future technologies
- •Elimination of rare earths in applications


Lower Prices:

•Increase of rare earth consumption in current and new applications

- New applications
- •Research and development
- •Opportunities

Rare Earths Projects for the 21st Century

Source: Yasushi Watanabe, AIST, Hong Kong, Nov. 9-11, 2010

TSX-V: MAT Corporate Presentation

Developing the Kipawa Heavy Rare Earth Deposit

5. 10 Steps to Commercial RE Production (Dudley Kingsnorth)

TSX-V: MAT Corporate Presentation

10 Steps to Developing a Heavy Rare Earth Deposit: (Dudley Kingsnorth)

Step 1: establish resource	2-5 years
Step 2: understand mineralogy	1-3 years
Step 3: scoping study	1-3 years
Step 4-6: pilot plant •Beneficiation, extraction & separation	2-10 years
Step 7: environmental approval	
Step 8: letters of intent	
Step 9: DFS & funding	2-4 years
Step10: engineering, procurement, construction	2-3 years
TOTAL AVERAGE	9 years

Matamec intends to complete these 10 steps in **7 years**

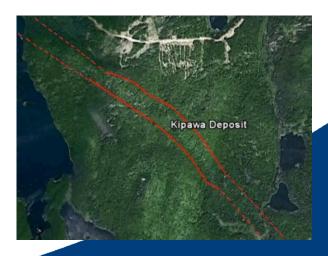
10 Steps to Developing a Heavy Rare Earth Deposit: (Dudley Kingsnorth)

Step 1: establish resource

2-5 years

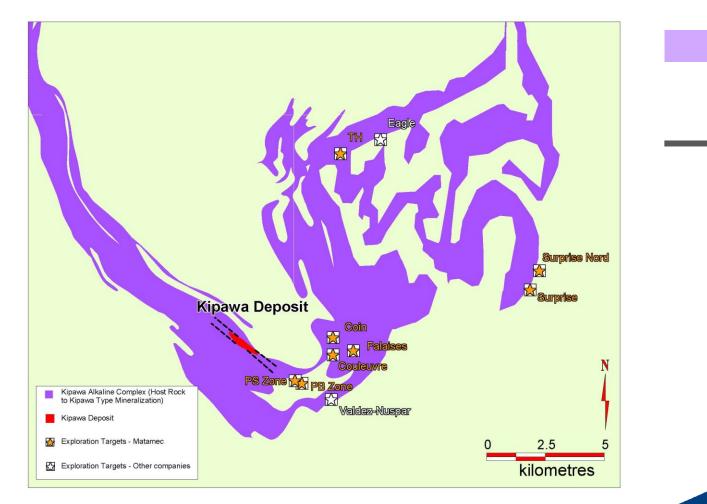
A Strategic Committee For Rare Earths

Advises Matamec's Board Of Directors


Anthony Mariano (2007)	A PhD geologist, worked on the identification of eudialyte and other rare earth-bearing minerals at the Kipawa Alkalic Complex	Has worked as a consultant for Matamec on the mineralogy of the Kipawa Complex since 2007.
Alex Knox (2007)	A MSc geologist with more than thirty four years of field experience in exploration	Has worked on the Kipawa deposit from 1985 to 1990. Since 2007, has advised Matamec on the exploration for rare-earths. He will be supervising the upcoming exploration program.
Les Heymann (2008)	A chemical engineer with over thirty five years of experience in the metallurgical and management ends of the mining industry. Has over eighteen years of experience of the production of rare earths	Since 2008, he has worked as a consultant to Matamec. Is currently directing Matamec's metallurgical testing program.
Raynald Vézina (2009)	A mining engineer with more than thirty-five years of experience in the mining industry.	Since 2008, he has advised Matamec regarding the development of the Kipawa deposit.

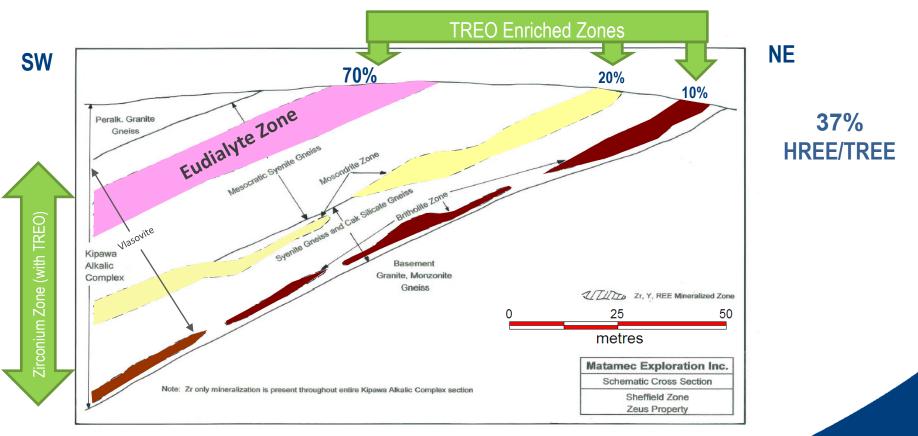
Zeus Property & HREE Kipawa Deposit - Location

The First Criteria for Industrial Mineral Deposits is Location Near Infrastructure



- •In Quebec, a premier mine jurisdiction
- •Near all weather roads
- •Near railway
- •Near mining towns with services
- •Near electrical power grid

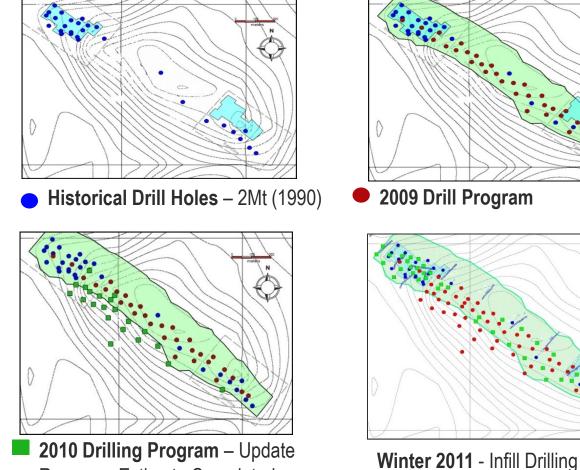
Zeus Property – Geology and Exploration Potential


Kipawa Alkalic Complex

Potential Mineralized Horizon

Kipawa Deposit + Other Zones and Showings + Untested targets over 25 km strike on the property along the Kipawa Alkalic Complex

Kipawa Deposit Schematic Cross-Section


Heavy Rare Earth Enriched Zones: 0.62% TREO (cut-off of Dy₂O₃ 0.016%) 4,920,090 Indicated tonnes + 4,260,000 Inferred tonnes (January 20, 2011, NI43-101)

Kipawa Heavy Rare Earth Deposit - Growth

Program Completed in

February

2010 Drilling Program – Update Resource Estimate Completed: 50 Mt (January 20, 2011)

TSX-V: MAT Corporate Presentation

NI 43-101

Ressources:

 $HREO+Y_2O_3$)

 $HREO+Y_2O_3$)

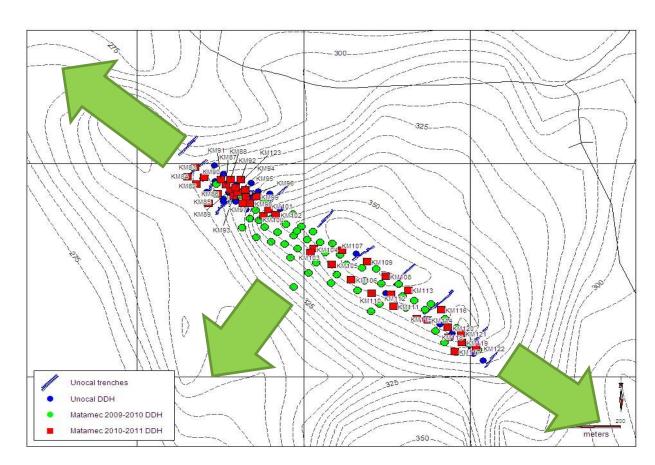
Indicated

Infered

+

4.9 Mt @ 0.61%

4.3 Mt @ 0.63%


TREO Infered (35%

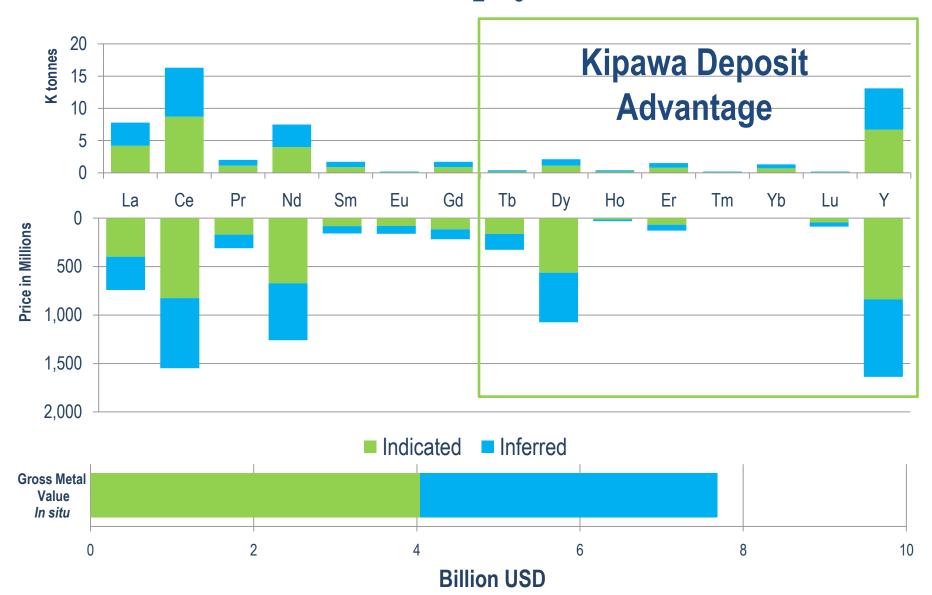
30.1 Mt @ 0.98% ZrO₂

20.9 Mt @ 1.00% ZrO₂

TREO Indicated (33%)

Resource Calculation: Showing Growth Potential

Winter 2011 - Infill Drilling Program Completed Feb.


Spacing 50 X 50m New Resource Estimate Coming this Spring

Deposit continuous over a distance of 1.45 kilometres

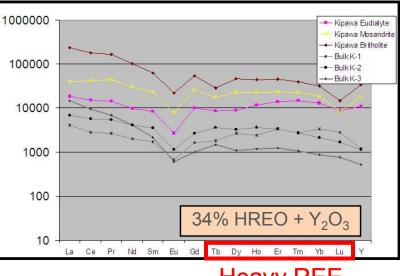
Deposit Open Laterally and at Depth

Indicated and Inferred NI 43-101 Resources: 0.62% TREO (cut-off of Dy_2O_3 @ 0.016%)

10 Steps to Developing a Heavy Rare Earth Deposit: (Dudley Kingsnorth)

Step 2: understand mineralogy

1-3 years



Kipawa Deposit: Mineralogy

(K	Minerals ipawa Deposit)	Mineral Formulas	Elements	REO Wt % (Kogel & al., 2006)
	Eudialyte	Na ₁₅ (Y,Ca) ₆ Fe ₆ Zr ₃ (Si ₂₆ ,0 ₇₃)(O,OH,H ₂ O) ⁵	Zr, Y, HREE	10 %
Paramatika Santa S	Mosandrite/ Yttro-titanite	NaCa ₂ (Ca,Ce,Y) ⁴ Ti(Si ₂ O ₇) ² F ₅ and (Y,Ca)TiSiO ₅	Y, HREE, Ti?	45 % (Mosandrite)
	Britholite	(Ce,Y,Ca) ⁵ (SiO ₄ ,PO ₄) ³ (OH,F)	Y, HREE, P ₂ O ₅	62 %
	Vlasovite	Na ₂ ZrSi ₄ O ₁₁	Soluble Zr (?)	
MA	▲ Silica ▲ 4 pot more at Kip	entially economical o than two dozens des	scribed	TSX-V: MAT Presentation 27

Mineralogy: Eudialyte

Heavy REE

Sodic Y-Fe-Zr silicate
 Source of HREE
 Average 2 to 10 mm dia.
 Associated with more mafic syenite

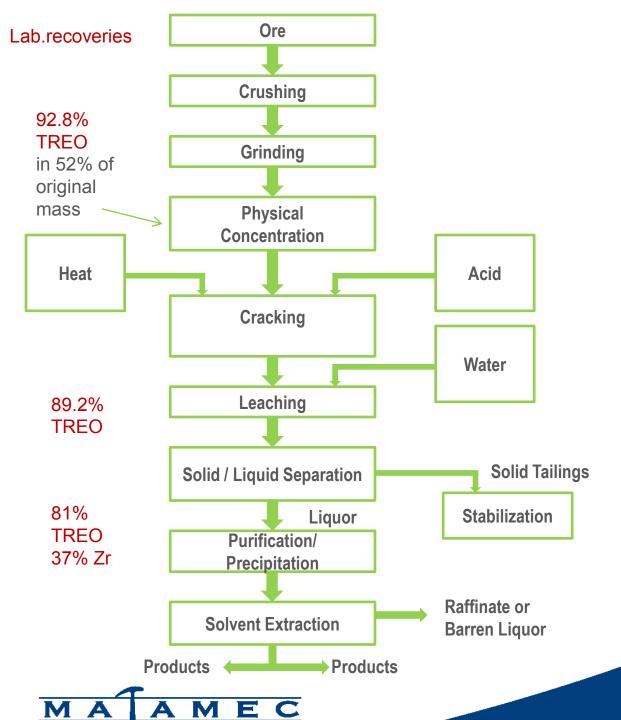
TSX-V: MAT Corporate Presentation

10 Steps to Developing a Heavy Rare Earth Deposit: (Dudley Kingsnorth)

Step 3: Scoping Study

1-3 years

Kipawa Deposit: Ore Processing


Unique in the world: simple mineralogy

Recovery of 89.2% of TREO to be found in eudialyte concentrate (52% of original volume)

less volume to leach = low cost

Because medium grained, well-crystallized and

not intergrown

Kipawa Deposit Rare Earth Ore Processing

The physical characteristics of the Kipawa ore allow for lowcost chemical extraction, which gives it a competitive edge against current rare earth producers

Press releases -January 20,2011 -March 8, 2011

> TSX-V: MAT Corporate Presentation

Project Timeline

Development Activity			20	009			20)10			20	011			20)12			20)13			20)14	
		Q1	Q2	Q3	Q4																				
Explora	Zeus																								
tion	Kipawa																								
Resource	Update																								
Metallurg Tests	gical																								
PEA																									
Prefeasibi	ility																								
Feasibility	У																								
Business I	Plan																								
Permitting	ıg																								

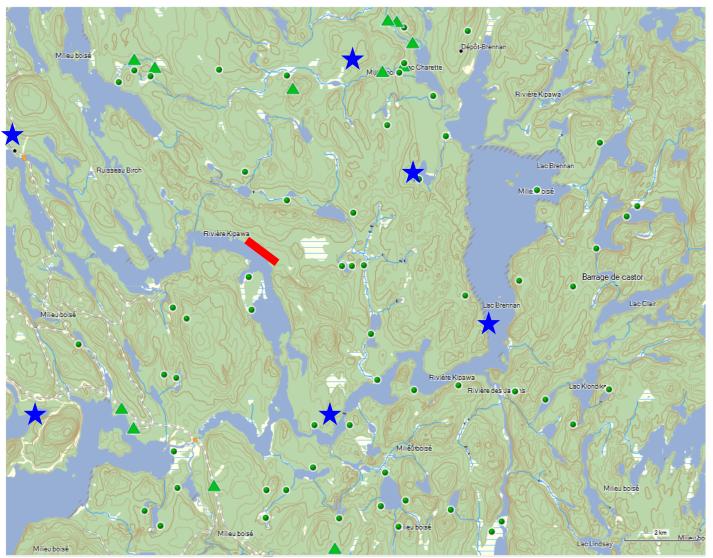
TSXX:MAT CopporteePPressentation

Kipawa REE-Y-Zr Deposit: 3 Year Plan - Budget

Cost and Sch	nedule of Fu	ture Work	
	2011	2012	2013
1- Geology	\$1.970M	\$3.630M	\$1.500M
 2- Engineering Studies including Mining - PEA - Pre-Feasibility - Feasibility 	\$0.300M	\$1.100M	\$3.850M
 Mineral Processing and Metallurgy Specific Testwork Continuous Testwork Pilot Plant - Construction 	\$1.000M	\$2.500M	\$3.750M
- Environment and Permitting	\$0.400M	\$0.600M	\$0.600M
- Relation with the Community	\$0.150M	\$0.500M	\$0.850M
- Market Study	Incl. in the Eng. Studies	-	-
Total:	\$3.820M	\$8.330M	\$10.550M

Five Deposits in Alkalic Complexes

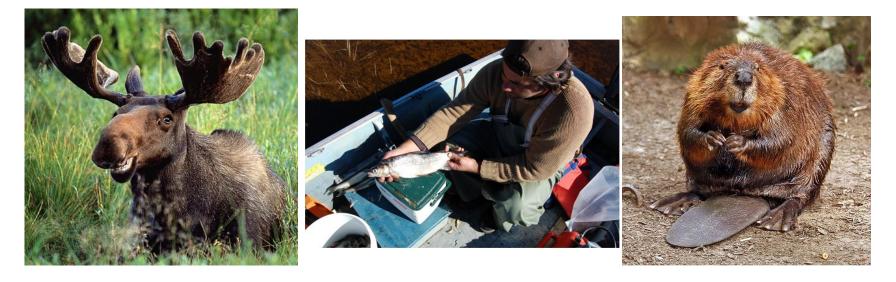
REE Company	Heavy REE Deposits	Last Development stage Completed	Capital Out- standing	Share Value (\$) (Mar. 4)	Market Capital
Avalon (T: AVL)	Lake Zone	Pre-Feasibility (July 2010)	93.338M	7.12	664M\$
Quest (V: QRM)	B Zone	PEA Study (Sept 2010)	58.358M	5.80	338M\$
Matamec (V:MAT)	Kipawa	Resource Calculation: Indicated and Inferred (January 20, 2011)	116.465M	0.485	56M\$
Tasman (V: TSM)	Norra Karr	Resource Calculation: Inferred (Nov. 30, 2010) – No Met.	56.636M	5.00	283M\$
UCORE (V: UCU)	Bokan- Dotson Ridge	Resource Calculation Inferred (March 7, 2011) – No Met.	142.902M	1.10	157M\$


10 Steps to Developing a Heavy Rare Earth Deposit: (Dudley Kingsnorth)

Step 7: Environmental approval

TSX-V: MAT Corporate Presentation

Environmental Impact Study: Some Areas of Interest



Small Environmental Footprint: Fauna

Developing the Kipawa HRE deposit

6. Sustainable Development

Sustainable Development

- Environmental protection programs
- Small environmental footprint
- Implication of the local communities from the beginning
- Preferential hiring policy for locals

Summary

Low Cost	 One of the few known HREO resources in the world with well understood and simple low cost processing solution Mining friendly location with low cost electricity Excellent access to infrastructure and mining services Open pit , low cost mining
High Value	 Addresses worsening shortage of REE and HREE supply Highly favourable exploration potential (chance of finding more) Fits demand
Timely	 Advanced discussions with end-users End of Chinese export of heavy rare earths in 2014

Undervalued Compared with its Peers

The Peak of Discovery

A Compact, High Quality and Low Cost Mine for 2015

